Spectroscopy at Very High Pressures. Part IX. Far-i.r. Spectroscopy at very **High Pressures**. Part **IX**. Par-i.r. Spectra of some Hexa-ammine Complexes of Ni(II) and Co(III)

D. M. ADAMS and S. J. PAYNE *Department of Chemistry, University of Leicester, Leicester*

LEl 7RH, U.K. LEI 7RH, U.K.
Received June 8, 1976

Introduction

 T is a maximum example complexes \mathcal{L} ne $\mathcal{L$ I ne nexa ammine complexes $[M(NH_3)_6]$ $[n = 2]$ or 3), have been studied often by i.r. and Raman spectroscopy and most features of the vibrational assignment are not in doubt. Interest in these materials has recently revived with the recognition that at very low temperatures they may show nonmagnetic phase changes associated with removal of rotational freedom from $NH₃$ groups.^{1,2} We report here the results of experiments designed to discover whether or not such phase changes could be induced
by an increase of pressure.

Experimental

 $\mathbf{L}_{\mathbf{r}}$ were prepared by standard rie complexes were prepared by standard methods.³ Far-i.r. spectra at high pressure were obtained using an ungasketed diamond anvil cell (DAC) in a Beckman-RIIC FS-720 interferometer.⁴ Low temperature spectra were obtained for Nujol mulls in a CTI-20 closed-circuit cryostat.

Results and Discussion

The series [Ni(NH3)6]X2 (X = Cl, Br, I), are all The senes $\left[\text{N}\right]\left[\text{N}\right]$ Λ_2 $\left(\Lambda \sim \text{C}\right]$, br, i), are all said to have the (cubic) fluorite structure.⁵ As is well known, selection rules then predict that the far-i.r. spectrum should show three T_{1u} modes due to v_3 , v_4 of the cation, and v_L (a lattice mode) respectively. In agreement with earlier work we find three bands in the $[Ni(NH_3)_6] I_2$ spectrum (Table I): what is new is that upon cooling to $77K$, in addition to the usual band sharpening, an entirely new feature appears ca. 150 cm⁻¹ in the form of a broad, intense absorption (Figure 1). v_3 shows no sign of splitting and neither do v_4 and v_L insofar as they can be seen. The position of the new absorption is consistent with its origin as a torsional mode associated with NH_3 ^{6,7} although we find it at a temperature well in excess of the known phase transition temperature of 20K. The behaviour of v_3 , v_4 , and v_L support the observation¹ that there is no phase transition down to this

temperature. A similar result was obtained for the temperature. A similar result was obtained for the bromide but the new absorption overlapped v_4 to the extent that neither could be measured accurately;
 v_3 remained sharp and single but v_L was broadened.

Figure 1. Far-i.r. absorption spectrum of $[Ni(NH_3)_6]I_2$ at (a) 290K; (b) 77K.

 $\mathbb{F}_{\mathbf{r}}$ of pressure were gradient from the different from \mathbf{r} the effects of pressure were quite unterent from those due to lowering the temperature, and plainly indicate a phase change with lowering of symmetry for all three compounds $[Ni(NH_3)_6]X_2$. ν_3 and v_4 either split or broaden significantly in each case; no splitting was resolved for v_L although there was usually some broadening which may be due to band splitting, or to the effects of the known non-hydro-
static pressure distribution in the DAC when used static pressure distribution in the DAC when used in the non-gasketed mode. The above results and consistent with a structural change to a rhombohedral factor group such as D_3 or D_{3d} , both of which would accommodate the observed splitting of T_{1u} modes. Due to the increased breadth and complexity of bands in the high-pressure spectra it is not clear whether or not $\tau(NH_3)$ modes contribute to the absorption, or whether this is accounted for solely by changes in the selection rules applicable to skeletal modes, although on balance it seems probable that they do. [Co(NH,),] I3 has the symmetry *Fm3m (oh'),*

[CO(NH₃)₆] I₃ has the symmetry $rmsm$ (O_h), with a unimolecular primitive cell. The result of a factor group analysis for the optic branch modes is:

		0.001 kbar: $77K$			0.001 kbar; $290K$			40 kbar: 290K		
		ν_3	$\nu_{\mathbf{A}}$	$\nu_{\mathbf{L}}$	v_3	ν_4	$v_{\rm L}$	v_3	v_4	$\nu_{\rm L}$
$[Ni(NH_3)_6]X_2$	$X = C1$	344	219 ^a	120	335	216	115	342,370	226	138
	$X = Br$	$\overline{}$	-1	$\overline{}$	329	218	91	334, 368	225, 265	107
	$X = I$	329	219	83 ^b	322	215	82	332	258,217	100
$[Co(NH_3)_6]X_3$	$X = C1$	ш.	269,335	94,156	$\overline{}$	332	148	\sim	341	175
	$X = Br$	$\overline{}$	-			320	118		325	144
	$X = I$	-	320	$88,109^{\circ}$	\sim	318	101 ^d	\sim	330	112,140

^a Approximate value only; see text. ^b There is also a strong, very broad, band *ca*. 150 cm⁻¹ attributed to $\tau(NH_3)$. ^c Weak, very broad, absorption *ca*. 200 cm⁻¹ probably due to $\tau(NH_3)$. dDoublet with unres ^dDoublet with unresolved components ca. 86,106 cm⁻¹

where only T_{1u} modes are i.r.-active. Thus, the selection rules for skeletal modes are the commonly accepted ones, but two lattice modes are expected in the far-i.r. We found two such lattice modes at $77K$: Le Postelloc⁹ found bands at 104 and 55 cm⁻¹ at room temperature but did not comment on the fact. At 77K there is a definite increase in absorption in a broad region centred ca. 200 cm⁻¹ in the i.r. spectrum of $[Co(NH₃)₆] I₃$ and which we attribute to $\tau(NH_3)$ motion. However, under an average pressure (force/area value) of 40 kbar no such increase was observed, although ν_4 and ν_L both showed substantial shifts to higher energy. Equivalent experiments were performed on $\text{[Co(NH₃₎₆] X₃ (X = Cl, Br), with much}$ the same results, although there were complications due to the much lower symmetry of these materials.

Conclusion

Preliminary i.r. studies have located a new highpressure phase in each of the compounds [Ni- $(NH_3)_6$ $[X_2,$ and have revealed some new lowtemperature features both in these spectra and in those of the cobalt (III) hexa-ammines. These systems warrant more detailed investigation at high pressures under hydrostatic conditions, using both Raman and i.r. techniques over a range of temperatures: we plan to undertake this work shortly.

Acknowledgment

We thank the S.R.C. for a grant to S.J.P. and for other support.

References

- 1 M. B. Palma-Vitorelli, M. U. Palma, G. W. J. Drewes, and C. Koerts, *Physica*, 26, 922 (1960).
- 2 A. R. Bates and K. W. H. Stevens, J. Phys. Chem., 2, 1573 (1969).
- 3 L. Sacconi, A. Sabatini and P. Gans, Inorg. Chem., 3, 1772 (1964).
- 4 D. M. Adams, K. Martin, and S. J. Payne, *Applied Spectro*scopy, 27, 377 (1973).
- 5 R. W. G. Wyckoff, "Crystal Structures," 2nd Edn., Vol. 3, Interscience, New York, 1965.
- 6 R. C. Leech, D. B. Powell and N. Sheppard, Spectrochim. D. M. Adams and J. R. Hall, *J. Chem. Sot. Dalton, 1450*
- 7 D. M. Adams and J. R. Hall, *J. Chem. Soc. Dalton*, 1450 J. A. *Ibers,Acta Cryst., B25, 168 (1969).*
- 8 J. A. Ibers, *Acta Cryst.*, *B25*, 168 (1969).
- 9 M. LePostelloc, J. Chim. Phys., 72, 675 (1975).